Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Am J Infect Control ; 50(8): 857-862, 2022 08.
Article in English | MEDLINE | ID: covidwho-2000224

ABSTRACT

BACKGROUND: Global shortage of personal protective equipment (PPE), as consequence of the COVID-19 global pandemic, has unmasked significant resource inequities prompting efforts to develop methods for safe PPE decontamination for reuse. The World Health Organization (WHO) in their Rational Use of PPE bulletin cited the use of a photodynamic dye, methylene blue, and light exposure as a viable option for N95 respirator decontamination. Because WHO noted that methylene blue (MB) would be applied to surfaces through which health care workers breathe, we hypothesized that little to no MB will be detectable by spectroscopy when the PPE is subjected to MB at supraphysiologic airflow rates. METHODS: A panel of N95 respirators, medical masks, and cloth masks were sprayed with 5 cycles of 1,000 uM MB solution. Mask coupons were subjected to the equivalent of 120 L/min of 100% humidified air flow. Effluent gas was trapped in an aqueous solution and the resultant fluid was sampled for MB absorbance with a level of detection of 0.004 mg/m3. RESULTS: No detectable MB was identified for any mask using Ultraviolet-Visible spectroscopy. CONCLUSIONS: At 500-fold the amount of MB applied to N95 respirators and medical masks as were used for the decontamination study cited in the WHO Rational Use of PPE bulletin, no detectable MB was observed, thus providing safety evidence for the use of methylene blue and light exposure for mask decontamination.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevention & control , Decontamination/methods , Equipment Reuse , Humans , Methylene Blue , N95 Respirators
2.
One Earth ; 3(5): 574-589, 2020 Nov 20.
Article in English | MEDLINE | ID: covidwho-1144885

ABSTRACT

Air-filtering masks, also known as respirators, protect wearers from inhaling fine particulate matter (PM2.5) in polluted air, as well as airborne pathogens during a pandemic, such as the ongoing COVID-19 pandemic. Fibrous medium, used as the filtration layer, is the most essential component of an air-filtering mask. This article presents an overview of the development of fibrous media for air filtration. We first synthesize the literature on several key factors that affect the filtration performance of fibrous media. We then concentrate on two major techniques for fabricating fibrous media, namely, meltblown and electrospinning. In addition, we underscore the importance of electret filters by reviewing various methods for imparting electrostatic charge on fibrous media. Finally, this article concludes with a perspective on the emerging research opportunities amid the COVID-19 crisis.

SELECTION OF CITATIONS
SEARCH DETAIL